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Reduction of Defects in Germanium Silicon

I. Summary

This report covers the work conducted in conjunction with the NASA activity denoted as
the RDGS program. The RDGS activity is focused on identifying the impact of crucible
containment on defect formation in Ge and GeSi crystals. To understand the effect of
containment, a major part of the research effort has been focused on achieving detached
growth in a Bridgman configuration. This report is not an exhaustive compilation of all
the work done on RDGS at Cape Simulations. Rather, it consists of our major findings in
the area of detached growth.

Detached growth can be considered at several levels:

1. Formation of detached growth

2. Stability of detached growth based on static force balance

3. Stability of detached growth to perturbations

4 Dynamics of detached growth: motion of the melt-gas-crucible line in tandem
with the advancing solidification front, and factors controlling the crystal
diameter so that it does not grow out to meet the containment.

This report primarily focuses on issues 2 and 3. Issues listed under 4 above are, however,
fundamentally very important and least understood. In general stability of crystals grown
from a meniscus, such as that shaped crystal growth championed by the Tatarchenkov,
can not be used to answer the above questions for detached growth in Bridgman
configuration. We remain confident that most answers to questions on detached growth
will come from the issues listed under 4 above.



Il. Pressure variation requirements across the
liquid column: RDGS experiments in NASA

5. Section Summary

In this section we report on two parallel studies of the RDGS experiments. In the first
study we focus on the fundamental issues, and in the second we use experimental
conditions to simulate the growth process. In the former, we seek to identify the
necessary conditions to achieve detached growth and in the latter, whether these
conditions are achieved in the proposed experiments.

6. Fundamental Considerations

The fundamental approach in these experiments is straightforward. The ampoule is
designed so that (a) a small volume of gas is trapped in the annular cavity separating the
seed from a quartz liner, and (b) a larger gas volume is present above the melt free
surface. In principle, the pressure difference between the two gas volumes can be
exploited to maintain a layer of gas between the growing crystal and the quartz housing
around it, and thus detached growth is maintained.

2.1 _ Hypothesis
The analysis and conclusions presented in this report are based on the hypothesis that:

e Detached growth is maintained, if the pressure in the gas trapped around the crystal is
approximately equal to the sum of the pressure in the top reservoir, hydrostatic head
of the liquid column, and the pressure drop across the melt-gas meniscus;

e If pressure in the trapped gas is higher than this value, bubbles will be formed
leaving the annular volume around the crystal;

o Ifthe pressure in the trapped gas is less than this value, the trapped gas column will
collapse and the molten material will rush in to replace the trapped gas;

Statements 2 and 3 are expected to occur when the trapped-gas pressure deviates from the
equilibrium value(statement 1) by some threshold values. Currently, we do not know
what these threshold values are. Furthermore, we do not know to what extent (if any)
reduced gravity increases the magnitude of these allowable deviations in the trapped-gas
pressure. It should be noted that for “small” pressure deviations the diameter of the
detached crystal will change with time. Our free surface analysis (see Figure 7) indicates
that for a given melt/crucible contact angle, the diameter will change for fairly small
deviations in the pressure of trapped gas. This, however, may be a much slower process
than bubble generation or loss of trapped gas.

2.2 Calculation of Required Pressure in the Top Reservoir
Consider two situations as schematically shown in Figure 1. First, after melt back and
prior to the start of growth process. Second, sometime during detached growth.




The lower-bound approximation to the pressure of the gas trapped after melt-back can be
written as:

P8 mRTl _ mRTl

1 Vl Ang
In the above Ag is the gap area which is equal to 27nr.3, where 3 is the gap thickness and
r. crystal radius. As the crystal grows (referred to stage 2) and the gap length goes from

L, to L,, pressure P& becomes (for constant temperature of trapped gas)

2

g_pely
Py =Frr,

Denoting the pressure in the top reservoir at PT, one can write the following equilibrium
equations:

PI'=P&—pgh)-APs

P) =PS—pghy—APs

In the above the second term on the right hand side denotes the hydrostatic head of the
liquid column, and the third term the pressure drop due to surface tension at the
meniscus. One can rewrite the last equation to obtain a relationship between the required
top pressure with increasing crystal length AL

L
PI=p8_"1 __pg(hi—AL)-AP
27T e P °

Another equally useful equation can be obtained for the required change in the top
pressure with growth:

pI-pT —pg

L
1 _
> P =F +AL1+pg(AL)

To better appreciate the implications of the above equations, they are evaluated at
conditions corresponding to the proposed experiments and listed in Table 1.  The Table
entries are based on the conditions at melt-back (i.e. initial conditions) which are
obtained from the detailed modeling results described in the next section. Simulation
results indicate that the pressure in the trapped gas at melt back would be 2.354x1 0°> N/m
and the height of trapped gas (i.e. seed length after melt-back) L; = 2.54 cm. The
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required pressure in the top gas reservoir at melt back is 2.272x1 0° N/m’. The term

2

T in the table denotes the required mean temperature of the gas in the top reservoir.

Table 1. Pressure and temperature calculations at conditions considered to lead to
detached growth in the RDGS experiments.

L pg(AL) T_pT T pl 1T

o leglf L= R 25
1 L1+AL P; (AL=0)

(cm) | N/m? N/ N/m? N/m? (K)
0 0 0 0 227x10° | 100.0% 1135
0.5 |-3.93x10° 2.45x10° | -3.69x10* |1.90x10° | 83.7% 951
1.0 |-6.74x10° 4.90x10° |-6.25x10" | 1.65x10° | 72.7% 823
2.0 |-1.05x10° 9.80x10° |-9.52x10° | 1.32x10° | 58.2% 660
3.0 |-1.29x10° 1.47x10%° | -1.14x10° | 1.13x10° | 49.8% 566
4.0 |-1.45x10° 1.96x10° | -1.25x10° | 1.02x10° | 44.9% 508
50 |-1.57x10° 2.45x10%° | -1.32x10° |0.95x10° | 41.8% 475
2.2.1 Features of Data in the Table

o The hydorstatic head (col 3) is small relative to the pressure of the trapped gas and
the gas reservoir.

0 After growth of a 5 cm sample, the pressure in the top reservoir (col 5) must be
reduced appreciably by close to 1 atm. Thus, the new pressure in 42% of the original
pressure in the top reservoir (col 6).

a The required reduction of pressure in the top reservoir with growth implies a
reduction of the reservoir’s mixed-mean temperature. Using perfect gas law and an

initial temperature of 1135 K, this implies that the top reservoir temperature has to be

reduced to 475 K (col 8) during a 5 cm crystal growth exercise.

7. Discussion

The above calculations imply the following chain of causality.
1. The initial pressure in the ampoule at room temperature determines the pressure of

the trapped gas at melt-back (Plg ), assuming that the trapped gas occupies the same

volume at room temperature as it does at melt back.



8.

The required pressure in the top reservoir, pT , is equal to the sum of the liquid

1

hydrostatic head, the pressure drop across the meniscus, and Plg .

The required pressure in the top reservoir establishes the required average
temperature in the gas reservoir (through perfect gas law).

The required reservoir’s mean temperature and the prevailing temperature gradient
along the reservoir establish (approximately) the required length of the top gas
reservoir.

Assuming one has the required pressure in the top reservoir, then with growth this
pressure has to be lowered to accommodate the decreasing pressure of the trapped gas
as it expands with increasing crystal length. For example, once the length of the
grown crystal equals the length of the seed at melt-back, the volume of trapped gas
has increased by a factor of two. Making a conservative approximation that the mean
temperature of the trapped gas has not changed from the value at the beginning of
growth, the pressure in the trapped gas would be reduced by half. This translates, in
essence, to a reduction by a factor of two in the required pressure in the top reservoir,
and an associated reduction (by a factor of 2) of the mean reservoir temperature. This
is a major reduction which in all likelihood will interfere with growth.

As a first approximation there is a direct relationship between the ratio of crystal/seed
length and the reqiured reduction of pressure and temperature in the top reservoir.
That is, for a crystal/seed length ratio of 2, the reservoir temperature and pressure
have to be reduced by a factor of 2. This required reduction can be lowered if one
considers the reduction of the temperature (thus pressure) of the trapped gas with
growth; however this would not be significant. For example, with a (large)
temperature gradient of 100 C/cm on the crystal side and a seed length of 2.5 cm, the
average temp of the trapped gas would be 1085 K. With 2.5 cm of crystal grown, it
falls to 960 K. If one accounts for this change of temperature, the trapped gas
pressure after 2.5 cm of growth is 44% of the initial pressure. If one ignores this
change of temperature, it would be 50%. As indicated above, this is a small
correction.

Implications

The fundamental calculations in this section indicate that for a fixed mass of trapped gas,
the gas reservoir pressure and temperature have to be reduced appreciably during growth,
IF the length of grown crystal is appreciable relative to the length of the seed at melt
back. Practical considerations suggest that the seed at melt-back must be long enough so
that the length of grown crystal would increase the volume of trapped gas by no more
than 20-30%, requiring a 20-30% reduction in the temperature and pressure of the top
reservoir.



9. Detailed Numerical Simulations

5.1 Preliminaries

A finite element thermal model of the planned growth ampoule, Figure 2, was developed.
The temperature profile of the furnace liner was modeled to be determined by the
setpoints provided by the MSFC group for three stages of growth as shown in the
following table. The furnace liner temperature is assumed to vary linearly between the
set points'. The temperature profile along the outer periphery of the quartz and the
corresponding set points for stage 1 is shown in Figure 3.

Table 2. RDGS Experimental Set points

Position of T/C Temperature at Temperature at Temperature at
From Bottom of Stage 1 (8 hrs) Stage 2 (10 hrs) Stage 3 (12 hrs)
Zone 6 in mm K K K

165 1233.18 1109.88 1067.65

91 1277.32 1260.01 1212.50

60 1223.03 1212.01 1183.12

29 1202.8 1194.31 1161.08

19 1141.55 1128.08 1092.94

5 946.43 927.29 892.23

The gap size between the crystal and the quartz insert (Figure 1) is equal to .05 mm at
room temperature. At melting point temperature of Ge, the differential expansion of
quartz and Ge® results in a smaller gap thickness of .038 mm.

The pressure drop across the meniscus separating the liquid and the trapped gas is based
on the solution of Laplace-Young equation with the following parameter values: growth
angle 10°, wetting angle 115° , surface tension 0.4 N/m.

5.2 Simulation Results

5.2.1 Stage 1, After 8 Hours

The temperature field in the charge at this stage is shown in Figure 4. Results indicate:

a The position of growth interface is 2.49 cm above the bottom of the seed. We refer to
this as the melt-back position.

O Average temperature of Ar above the melt is 1250 K. This translates to a pressure of

0 Average temperature of trapped Ar in the gap is 1177K.

0 Pressure of Ar in the gap is calculated to be 2.354x1 0° N/m®. This calculation is

! The temperature measurements reported on an ampoule containing Si are inconsistent with the furnace
setpoints reported for the same experiment. That is, the temperatures measured on the ampoule are higher
than the set points. Accordingly, we chose to use the furnace set points, until this discrepancy is resolved.

? Linear thermal expansion coefficient for Ge and quartz are 5.7 x10° K and 5.7x107 K, respectively.




back and equal to the initial density of Ar at room temperature. That is, the ratio of
pressure to temperature remained constant’.

o The calculated pressure in the top reservoir is higher than the pressure in the gap,
whereas fundamental considerations indicate that it should be smaller. It is larger
than the required pressure value of 2.27 x10° N/m?. Thus, there is a pressure
imabalance.

Q Alternatively, the reservoir’s temperature of 1250 is higher than the required value of
1135 K.

We do not have the tools to establish whether the excess pressure of about 0.23 atm in the
top cavity is sufficiently large to force the melt into the gap around the seed.

5.2.2 Stage 2, After 10 Hours

The temperature field in the ampoule is shown in Figure 5. Results indicate that:

o Position of the interface is 3.38 cm above the bottom of the seed

O Average temperature of Ar above the melt is 1169 K, implying an Ar pressure of
2.338 x 10° N/m’

O Average temperature of trapped Ar between the crystal and the inner crucible is 1171
K.

a With the average temperature of the trapped Ar essentially the same as in the previous
case, its pressure is calculated to be 1.734 x 10° N/m’.

0 The calculated pressure in the Ar reservoir is about .6 atm higher than the required
value of 1.734 x 10° N/m’.

a The required reservoir temperature is 586 K (!), which is lower than the calculated
value by 583 K (!)

5.2.3 Stage 3, After 12 Hours
The temperature profile for this stage indicates that the entire melt is frozen, Figure 6.

10. Sensitivity Analysis

The calculated values of meniscus pressure-drop are influenced by the assumed values of
growth angle o, and contact angle 6. Figure 7 shows the variation of this value over a
range of the two angles (a, varying from 7 to 12° and  varying between 70° and 120°).
Results indicate a weak sensitivity to o, and a stronger variation to 6. As the calculated
reservoir pressure for both stages is higher than those of the trapped Ar, the variations of
meniscus pressure with o, and 0 can not correct for this deviation. In sum, possible
errors associated with the assumed values of o, and 0 are not large enough to bring the
calculated values of reservoir pressure close to the required values. Overall, the

3 An alternative scenario may correspond to the situation where the melting process would start from the
top of the solid and all the gas contained between the charge and quartz is compressed down towards the
seed as the melting front proceeds. This would yield a higher pressure for the trapped Ar.



meniscus pressure drop does not play an important role in the present calculations, and
thus possible errors due to assumed values of contact and growth angles are unimportant.

The calculated pressures are much more strongly impacted by the assumed furnace
temperature profile. The furnace temperature profile directly influences the three primary
parameters. First, the pressure in the top reservoir. Second, the length of the seed at melt-
back, thus the initial volume of the trapped gas. Third, the temperature of the trapped Ar,
and thus its pressure during growth.

11. Conclusions

Simulations and fundamental considerations indicate that, for the assumed furnace
temperature profile, the reservoir pressure is higher than the required value by non
negligible amounts. These deviations are sufficiently large not to be attributable to
modeling errors or inaccuracy in thermo-physical properties. These results suggest that
the furnace set points and the ampoule design be re-evaluated. The first step in this
direction would be the selection of a furnace for detailed modeling and adoption of a
profiling technique that would generate results that could be compared with the
calculations. Once in this manner the range of possible temperature profiles is
determined, attention can be focused on ampoule design. Alternatively, we can start with
an ampoule design and identify furnace conditions that would yield the necessary
pressure in the top reservoir. The draw back here is that one may end up with
temperature profiles which cannot be obtained in any of the available furnaces.

10
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Figure 1. Schematic of the gas entrapment mechanism during meltdown.
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Figure 2. Schematic of the ampoule used in the first series of experiments.
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Temperature field in the ampoule during
detached Bridgman growth
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Figure 4. Calculated temperature profile in the cartridge, 8 hours into growth.
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Figure 6. Calculated temperature profile in the ampoule, 12 hours into growth.
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Figure 7. Calculated values of meniscus pressure-drop are influenced by the assumed
values of growth angle o, and contact angle 6.



Ill. Stability of detachment

1. Introduction

This section focuses on stability of the detachment gap after it has been formed. As the
metric of stability we use the sensitivity of the gap thickness to perturbations in the
parameters that control detachment: pressure of the gas in the detached gap, pressure of
the gas at the upper free surface of the melt column, hydrostatic head of the liquid
column, and the melt surface tension. We will show that the gap thickness and its
sensitivity is a strong function of the contact angle between the melt and the crucible.
We will further show that the gap thickness sensitivity is significantly reduced at low
values of gravity, indicating a higher probability to achieve stable detached growth in
space.

2. Analysis

The growth system under analysis is schematically shown in Figure 1. Detailed view of
the meniscus is shown in Figure 2.

top reservoir

melt

crystal

Figure 1. Schematic of the growth system.
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Figure 2. Schematic of meniscus identifying relevant geometrical and physical
parameters.

The analysis reported here is based on the equations governing the static balance of
forces in the meniscus around the growth interface during detached growth. These
equations, generally referred to as Young-Laplace equations, are used to calculated shape
of the detached meniscus at various values of the controlling parameters. These results
are then used to calculate the stability metric described above. It is important to note that
our stability metric does not in of itself indicate presence or absence of stability. Rather,
it is a relative indicator which rank-orders the sensitivity of the gap to various conditions.
Comparison of this information with existing experimental evidences will be used to infer
conditions that will result in detached growth on Earth versus those for which space
processing is required.

The Young-Laplace equations are shown below in non-dimensional form. In the above
all length scales are non-dimensionalized by the ampoule radius Ry, R stands for radial
direction, Z for axial direction measured from the location of the growth interface, S
direction along the meniscus. The angle o is the angle that the meniscus makes with
respect to the z axis and has the value of growth angle at the crystal-melt-gas tri-junction.

19



dR .

— =sina

ds

d.

— =cosa

do. _ cosa + ZBo~TI

ds
In this formulation the various controlling parameters are lumped into two non-

dimensional numbers Bo and IT which capture the influence of material properties and
pressure difference, respectively:

R
IT= (PTop +pgh"Pgap)‘;a‘

where Pr,, is the pressure on the top surface of the liquid column, h is the height of melt
column, and P, is the pressure below meniscus. The Bond number (Bo) captures the

influence of gravity relative to the surface tension forces, and Il captures the relative
influence of the pressure difference to the capillary forces. As gravity is reduced the
Bond number decreases and becomes inconsequential in determining the shape of the
meniscus. Thus, at sufficiently low values of gravity the shape of the meniscus is
insensitive to the value of gravity and is determined solely by the parameters in IT,
namely the pressure drop across meniscus, ampoule radius, and surface tension of the
melt. Thus, the parameters included in I'T uniquely determine the equilibrium crystal
radius (or equivalently the detachment gap) in space.

In general, the Young-Laplace equations are solved along the following lines. For a given
value of Bo and IT a certain crystal radius is assumed and the above three equations are
integrated along the meniscus starting from the crystal-melt-gas tri-junction; the
boundary condition at this point is that o be equal to (the material-dependent) growth
angle. These equations are integrated until the meniscus contacts the ampoule. If the
contact angle constraint is not satisfied at that point, then the calculation procedure is
repeated with a new crystal radius. This procedure is repeated until the correct contact
angle is obtained at the melt-ampoule-gas tri-junction.

The analysis reported below is done for GeSi properties, except when the influence of
contact angle is explored.

20



3. An Experimental Observation

The results presented below must be considered with the background of one important
experimental observation.

Experiments conducted as part of this work have shown that on Earth the gas pressure in
the gap below the meniscus cannot significantly exceed the sum of hydrostatic head, the
pressure at the melt free surface, and the pressure drop across the meniscus.  Once this
limit is exceeded the gas trapped below the meniscus generates bubbles which rise
around the melt column. In terms of our analysis this observation translates to the

constraint that the minimum value of IT on Earth is close to zero.

4, Results

4.1 Fundamental Behavior

A representative set of meniscus shapes on earth for a range of values of Py, — Pr,p, is
shown in Figure 1. These results indicate several important issues:

e For larger values of P,,, - Pr,, the meniscus is convex and detachment gap is
fairly small.

e As the pressure of the gas below meniscus is lowered relative to the pressure at
the melt free surface, the crystal diameter decreases (detachment gap starts to
widen) and then it reverses and starts to increase. In Figure 1 this phenomenon is
observed around P,,, — Pr,, 0f 5059 N/m?. Pressure differences lower than this

value result in appearance of hour-glass shaped meniscus shapes. With further
decreases in the in pressure difference the lower part of the meniscus starts
approaching the crucible wall. At a pressure difference of 5010 the crystal re-
attaches to the crucible.

¢ The range of pressure differences that would cover a very wide range of meniscus
shapes is fairly small: roughly a 10% change in the pressure difference results in
the collapse of the meniscus.

o The hydrostatic head for the case studied is about 5200. Thus, the above results
indicate that it is possible to get detached growth at conditions where the gap
pressure is lower than the hydrostatic head. The meniscus shape would have the
hour-glass shape under these conditions. It should be noted that this is a small
region of existence. A 5% change in the gap or top pressures would result in the
collapse of the meniscus.

A similar set of data for 10 g is shown in Figure 2. These results indicate a substantially
different behavior:
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4.2

The elimination of hydrostatic head implies that detachment can be achieved over
a much wider range of pressure differences Py, — Prqp, -

As the gap pressure falls below that of the top pressure, the system responds by
monotonically decreasing the crystal radius.

Influence of Contact Angle on Gap Thickness

The influence of contact angle on thickness of detachment gap is explored in Figures 3
and 4 for 1g and 10 g, respectively.

4.3

Both sets of calculations reveal that the gap thickness decreases with increasing
difference between the pressure in the gap and melt top. In Figure 3 we have
inserted a vertical dashed line to indicate that only values of pressure to the left of
this line are realizable on earth. Higher values would result in bubbling.
formation.

A more interesting observation is that the gap thickness decreases appreciably
with increasing contact angle. Thus, for otherwise identical values of Pgap-Pop ,
increasing the contact angle from 125 to 169 degrees decreases the gap thickness
by more than one order of magnitude. The effect of gravity appears primarily at
low values of Pgap-Prop, Where the plotted curves turn downwards. Other than this
effect the overall behavior, particularly the influence of contact angle, is similar.

Sensitivity of Gap Thickness

The sensitivity of gap thickness to the pressure difference across the melt is explored in
the next two figures. Figures 5 and 6 show plots of non-dimensional derivative of gap
thickness with respect to the non-dimensional pressure IT (de/dIT) versus the non-
dimensional pressure. We consider this parameter to be a direct indicator of the
“stability” of the detachment gap. The outstanding features of these results are:

The gap sensitivity goes down with increasing gap pressure, or equivalently gap
thickness.

The gap sensitivity is strongly influenced by the contact angle. At otherwise
identical conditions, the gap sensitivity parameter is lowered by close to two
orders of magnitude when the contact angle is increased from 125 to 169 degrees.

It must be noted, again, that as the dashed line in Figure 3.2-5 indicates at 1g the
gap pressure can not exceed a certain value due to possibility of bubbling. In
microgravity, however, we can arbitrarily increase the gap pressure to reduce the
sensitivity of the gap thickness to perturbations in non-dimensional pressure I1.
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e Another important issue regarding operation in microgravity is the stability of
detached growth for a fixed volume of trapped gas. That is, if a fixed volume of
gas is trapped below the meniscus, its pressure decreases as its volume increases
with increasing crystal length, as well as the reduction in its average temperature.
The present results indicate if a sufficiently large amount of gas is trapped below
the meniscus yielding a large value of P,,, — Pr,,, then as the gap pressure
decreases with growth it will stay stable. This is in contrast to growth on earth
where the gas below the gap cannot be pressurized.

4.4  Influence of Growth Angle

A growth angle of 9 degrees was used in this analysis. Variation of this parameter in the
reasonable range of 7-12 degrees did not lead to any significant changes in the results
obtained above.

4.5  Influence of Wetting Angle

where R=1/R,, Z=2/R, (z coordinate is measured from the growth interface), S=s/R,,
Bo(=pmgRa>/c) is Bond number, and Po=(PioptmPmg-Pg)Ra/C.

For the zero-g (i.e. no-gravity) case, the Laplace Young equations have the analytical
solution given by:
cosB - 1:1/2 I r
cosQ = ——— L& —
R 2 R,

which yields the following equation for non-dimensional crystal radius R;=R¢/Ra:

%—Rf —cosa., R, —cosO ——121 =0

Denoting the nondimensional gap width as e (=1-R,), we obtain the following expression
for the rate of change of the gap width with respect to the wetting angle (i.e. 0e/00) for
the zero-g case:

Oe _ sin 6
® TI(l-e)-cosa,

The equivalent of the above equation for the one-g case can be obtained numerically. We
use Oe/00 as a sensitivity parameter of the gap width to the wetting angle. Figure 8
shows the variation of de/00 with respect to 6 and T1. The one-g results map onto the
zero-g results for large negative values of I'T; the reason for this is explained later. The
dramatic change in the behavior as [T becomes positive is indicative of a fundamental
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change in the force balance. At this point the one-g results for this case were not
obtainable due to numerical uncertainties.

For all curves in Figure the maximum gap width was 100 um. Before we proceed any

further, it should be noted that for range of negative IT shown in Figure the gap width

decreases with increase in the wetting angle, whereas for IT =2 the opposite is true (i.e.

the gap width decreases with decrease in the wetting angle).

Effect of gravity on the gap width is twofold:

= Due to potential bubbling on earth we are restricted to operating at pressures in the
gap close to poptlmpmg - This restriction is removed if we operate in micro-gravity.

*  Gravity influences the meniscus shape, and therefore the gap width, through term
ZxBo. Thus, one can see that effect of gravity can be neglected if | ZxB, | << |11 |.
Our meniscus shape calculations have shown that for large negative I (i.e. sum of
the top pressure and the hydrostatic head smaller than gas pressure in the gap) the
meniscus is arc shaped, and that the height of the meniscus is comparable to the gap
width. Therefore, for large negative values of IT , ZxB, is negligibly small. With
further decrease of the pressure in the gap, as I approaches and exceeds zero, the
meniscus shape changes from an arc to an hourglass. This change in the meniscus
shape results in increase of the meniscus height, which coupled with decrease in the
magnitude of IT makes the term ZxB, comparable in magnitude to IT. This effect is
evident in Fig. 7 , for [T=-4 and I1=-2, as the divergence between the one-g and zero-
g data.

From Figure 7 we can ascertain the following:

= Sensitivity of the gap width ( | Be/0 | ) to the wetting angle decreases with increase in
the wetting angle for a constant IT.

» For the same wetting angle, systems that operate at higher IT (lower py) are more
sensitive to the changes in the wetting angle than systems that operate at lower I1
(higher py).

These conclusions can be used to explain propensity towards detached growth, on earth,

in ampoules for which the wetting angle is large.

Results of this study suggest that systems operating at high pressures in the gap (lower IT)
are less sensitive to changes in the wetting angle during growth than ones operating at
lower pressures in the gap (higher IT). The possible causes of changes in the wetting
angle during growth may include variations in: ampoule material composition,
compositional change of the melt during growth of alloys, temperature effects on surface
tension. Therefore, in micro-gravity we should operate at the largest negative I that
system allows to minimize sensitivity of the gap width to possible variations of the
wetting angle. It should be noted that this analysis is based on an axi-symmetric model,
and therefore assumes azimuthal uniformity of the contact angle. Therefore, it does not
address possible stability issues caused by azimuthal variations in the contact angle.
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4.6  Summary of Results
The results presented above can be summarized as:

1. Gap thickness decreases strongly with increasing contact angle.

2. Large values of (#,,, — Pp,, — pgh) can be only achieved in space; on earth bubbling
will set in.

3. Gap thickness decreases with increasing values of (Pgap = Frop — Pgh)

4. The detachment sensitivity parameter de/dIT decreases strongly with increasing

contact angle
5. de/dIT is small for large values of (P,

6. de/dIl is very sensitive to the pressure difference across the melt column

(Pgap — Prop — Pgh) at small values of this pressure difference. Thus, on earth where

this value is close to zero, the detachment sensitivity to perturbations in pressure is at
its highest.

7. Sensitivity of the gap width ( | Be/o0 | ) to the wetting angle decreases with increase in
the wetting angle for a constant IT.

8. For the same wetting angle, systems that operate at higher IT (lower pg) are more
sensitive to the changes in the wetting angle than systems that operate at lower I'1

(higher p,).

— Pr,,) which can be only achieved in space

5. Quantitative stability criterion

The above analysis provides a relative framework to analyse the sensitivity of detachment
gap to perturbations. It does not in of itself provide a quantitative measure of gap
stability. However, a semi-quantitative measure may be obtained by analyzing these
results in the context of reported experimental evidences of detached growth. In nearly
all cases where the detached growth has been reported in space and not on Earth, the
contact angle of the growth system has been around 120 degrees. On the other hand, our
experimental evidences indicate that with a contact angle of 169 degrees detached growth
is possible on Earth. Similarly for smaller contact angles we have been unable to grow
detached crystals on Earth. As we do not have any information on the system pressure for
the space detached growth experiments, it is not possible to map these results directly
onto the data presented in this section. Nevertheless, using results of our ground-based
detached experiment (GeSi in contact with PBN) our analysis would indicate that a
de/dIT of about 5x10™ is necessary to achieve detached growth. This value of de/dI1
can be obtained for contact angles less than 169 degrees at large positive values of I1 (or

alternatively P,,, — Pr,, —pgh). As large positive values of P,,, — Pr,, ~pgh are only

attainable in space (where bubble departure is not operative) detached growth for these
systems can be only achieved in space.

6. Comparison With experimental Observations

The results presented above can be used to answer the following fundamental question:
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Why has detached growth been reported primarily in space experiments?

As Table 1 indicates, most semiconductor/crucible systems have a contact angle not
exceeding 130 degrees.

For these systems, our stability criterion of de/dII of about 5x10* is not satisfied on
Earth because departure of bubbles forces the system to operate around
Poap = Prop +pgh. Our calculations indicate that de/dI1 for contact angle of about 130

degrees at this level of gap pressure can be close to one order of magnitude higher than
5x10™ . In space, however, it is possible to operate a large values of Pyqp With associated

de/dIT values of about 5x10™ . In space once a gas bubble is generated somehow below
the growth meniscus, pressure is built up in that region and detachment is obtained. This
detached gap is quite insensitive to perturbations to the system and is maintained while
the crystal grows. With growth the volume of the trapped gas increases, and with no
addition to the volume by mechanisms such as that proposed by Wilcox, will result in
lower pressure of the gas in the detachment gap (lower P,,,). At some point with

decreasing gap pressure F,,, the instability parameter increases the critical value of

de/dIT (about 5x10™ based on these calculations). At that point in time detached growth
becomes unstable. However, because there is no limit on the magnitude of gas pressure

in the detachment gap at onset of growth (i.e. Py, can be large) it is possible for

detached growth to continue for a very long period of time; there is no theoretical factor
that would inhibit achievement of detached growth for the entire crystal.

Semiconductor Crucible Contact Semiconductor Crucible Contact
Angle Angle

CdTe p-C 116° GaSb p-C 128°
p-BN 120-130° p-BN 132°
SiO, 70-90° ALO; 112°

CdZnTe p-C 126° SiO, 121°

InSb p-C 124° GaAs SiO, 100-115°
p-BN 134° p-BN 140-150°
AbLOs 111° p-C 100-120°
SiO, 112°

Table 1. Contact angles for molten semiconductors

Another factor in favor of space processing is the possible magnitude of pressure
perturbations. On Earth the hydrostatic head has to be accounted for in the pressure
balance. Thus, the pressure difference across the melt P, , — (Pr,, + pgh) becomes the
difference between two large numbers and any change in the top or gap pressures would
create a large imbalance and thus a large perturbation. In space, the pressure difference is
not the difference between two large numbers and thus the possible magnitude of
perturbations will be smaller.
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Figure 1. Menisci at different values of Py, — Pp,, at lg.
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Figure 2. Menisci at different values of P,,, — Pr,, at micro-g.
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Gap thickness vs Pressure Difference Across Melt Column
Influence of Contact angle at 1g
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Figure 3. Variation of gap thickness with P,,, — Pp,, for three contact angles at 1g.
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Figure 4 . Variation of gap thickness with P,,, — Py, for three contact angles at micro-g.
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Sensitivity of Gap Thickness to Pressure Difference
Across Melt Column
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Figure 5. Sensitivity of gap thickness in terms of non-dimensional pressure (de/dIT)
versus Py, — Pr,,at three contact angles at 1g.
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Figure 6. Sensttivity of gap thickness in terms of non-dimensional pressure (de/dIT)
versus Py, — Pr,, at three contact angles at micro-g.
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IV. Thoughts on dynamics of growth process

The growth angle yo is considered to be a material property which can be shown to be
related to the surface energy balance at the melt-crystal-gas-tri-junction. It is measured
as the angle made by the tangent to the growing crystal and the tangent to the meniscus,
both at the tri-junction.

At steady state growth the meniscus makes the growth angle with the growing crystal.
For a given set of gas pressure, hydrostatic pressure, and melt free surface pressure, the
capillary force balance at the meniscus results in a meniscus shape such that it would
satisfy the growth angle condition at the meniscus and the contact angle condition at the
crucible wall. There is only one crystal diameter that would satisfy these conditions.
Thus, for a given set of pressure parameters, the crystal diameter is determined; at steady
state growth the crystal would grow at this diameter.

Now, if any one of the three pressure parameters ( gas pressures, hydrostatic pressure,
etc.) changes the meniscus responds fairly rapidly. The result is a meniscus shape which
will not satisfy the growth angle (it may also not satisfy the contact angle; for elaboration
on this point see next-to-last paragraph below). Thus the so-called melt angle ( yDhwill
not equal the growth angle. Figure 1b shows the scenario where, for example, the
pressure of the trapped gas has been increased. The system will go through a transient
and re-establish a new equilibrium where the two angle conditions are satisfied. This
equilibrium can be achieved only at a diameter other than the original one. Figure 1c
shows the equilibrium established at a larger crystal diameter.

crystal pull rate which in effect would result in pulling or pushing on the meniscus, (b)
thermal changes which would push the melting isotherm higher or lower relative to the
melt free surface and thus, again, result in elongating or compressing the meniscus. In
Cz-growth of Si the pull rate is used to control the diameter by changing the shape of the
meniscus to compensate for the thermally-induced perturbations to the location of the
growth interface (ie one end of the meniscus); In Cz-Si the growth rates are high so that
changes in the pull rate influence the thermal attributes of the growth region ( by
changing the release of latent heat) as well as elongating/shortening the meniscus shape.
Thus, the system response is much higher than it would be if changes in the pull rate were
to pull/push the meniscus. In Cz-Si a plot of pull rate vs time would show very large
amplitudes and relatively high frequencies.

In LEC growth of GaAs, such rapid changes in the pull rate generally results in poly
growth. The approach adopted here is to put the heater controllers are an empirically-
determined cooldown program such that at constant pull rate the thermal equilibrium at
the growth interface ( balance between heat input from melt, heat loss from the crystal
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and latent heat release) is maintained with increasing crystal length, resulting in a steady
meniscus shape and thus diameter during growth.

Our detached growth process and the Cz/LEC process are similar in the sense that at
equilibrium crystal diameter is determined by the shape of the meniscus. There are
however, several differences on how the meniscus shape is influenced. In the CzZ/LEC
system the melt free surface determines one end of the meniscus; the melt free surface
plays the role of contact line between melt and crucible in our process. Any thermal
changes in the CZ/LEC system will not have an impact on the melt free surface. Thus,
by displacing the position of the growth interface (ondulating the pull rate) the meniscus
shape can be modulated resulting in variations in the diameter. Changes in the thermal
field, such as the growth interface shape, do not have a direct bearing on the meniscus
shape: The meniscus shape determines the diameter which in turn determines heat flow at
the growth interface and thus shape of solidification interface. Similarly, a change in the
growth interface shape is associated with changes in the thermal field (eg reduced heat
loss from crystal resulting in a more concave interface) which would result in displacing
the growth interface ( pushing the melting point isotherm further up into the crystal)
resulting in a new meniscus shape leading to a different diameter.

In our case, we get changes in the meniscus shape primarily through changes in the
pressure parameters. In case of thermal effects, let us assume that for some reason the
growth rate falls behind the translation rate. Since we are translating the crucible and the
charge, we do not introduce any relative displacement between the growth surface and
the melt-crucible contact line. Thus, even if the heat transfer in the growth region
changes resulting in a change in the growth interface shape, the only factor that will
effect detachment is the changes in the pressure of the trapped gas. Within our
framework, there is no other way for detachment to be influenced.

One hypothesis which we have not questioned much is the ease with which the melt-
crucible contact line can slide. We implicitly assume that if we can get the necessary
pressure conditions to maintain detachment, then as the crystal grows the melt-crucible
line recedes at the same rate as the growth rate resulting in a steady meniscus shape.
Now, if that contact line moves at a rate different from the growth rate then our
detachment gap thickness would change. The fundamental question that presents itself
is: what determines the speed of the melt-crucible contact line. In principle, the capillary
force balance does exert a force parallel to the crucible wall at the melt-crucible contact
line. It may be that as the growth interface advances and squeezes the meniscus a net
axial force is generated at the melt-crucible interface that would push it upwards.
Ampoule surface roughness would have an important influence here.

Our analysis is based on the quasi-steady state assumptions. That is, we calculate the
equilibrium crystal diameter from the given set of process conditions. To answer the
question of previous section as well as how does the meniscus actually go from on state
to the other, requires dynamic simulations which would be future work ( This was part of
the original proposal but we cut it out because of lack of funds)
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Figure 1. Response of the crystal growth process to an increase in the gas pressure p-gas.
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